

Blind analysis of isobar data for the CME search by the STAR collaboration Based on: https://arxiv.org/abs/2109.00131 Phys. Rev. C 105, 014901 (2022)

Prithwish Tribedy

(Brookhaven National Laboratory)

RIKEN BNL Research Center

Physics Opportunities from the RHIC Isobar Run

This workshop will be held virtually. January 25-28, 2022

Isobar program at RHIC: journey since 2018

The versatility of RHIC and the unique capabilities of the STAR detector were crucial to the success of our program

Parity Violation in Hot QCD: Chiral Magnetic Effect

Physics Letters B 633 (2006) 260-264

PHYSICS LETTERS B

www.elsevier.com/locate/physletb

Parity violation in hot QCD: Why it can happen, and how to look for it

Dmitri Kharzeev

Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

Received 23 December 2004; received in revised form 27 October 2005; accepted 23 November 2005

Available online 7 December 2005

PHYSICAL REVIEW C 70, 057901 (2004)

Parity violation in hot QCD: How to detect it

Sergei A. Voloshin

Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA

(Received 5 August 2004; published 11 November 2004)

Early theory paper

Kharzeev, hep-ph/0406125

Also see: Kharzeev et al, hep-ph/9906401, Kharzeev et al, hep-ph/9804221

First method paper

Voloshin. hep-ph/0406311

Also: Finch et al Phys.Rev.C 65 (2002) 014908

Selected for a Viewpoint in *Physics*PHYSICAL REVIEW LETTERS

week ending 18 DECEMBER 2009

Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

(STAR Collaboration)

First experimental paper

STAR collaboration, arXiv:0909.1739

Search for the chiral magnetic effect with isobar collisions at $\sqrt{s_{NN}}=200$ GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider

M. S. Abdallah et al. (STAR Collaboration)
Phys. Rev. C **105**, 014901 – Published 3 January 2022

PRL 103, 251601 (2009)

Blind analysis of the Isobar data

STAR collaboration, arXiv:2109.00131

The chiral magnetic effect (CME) in four steps

Mechanism to create imbalance of left & right handed quarks

Kharzeev, McLerran, Warringa 0711.0950

Kharzeev et al, hep-ph/0109253, Mace et al, 1601.07342, Muller et. al.1606.00342, Lappi et al,1708.08625

The Chiral Magnetic Effect (J | B)

Kharzeev, arXiv:hep-ph/0406125

A gold-gold collision @ STAR detector

Elliptic anisotropy in particle production

Elliptic anisotropy is measured by correlation between two particles

$$v_2\{EP\} = \langle \cos(2\phi_1 - 2\Psi_2) \rangle$$
 $v_2\{2\}^2 = \langle \cos(2\phi_1 - 2\phi_2) \rangle$

Elliptic anisotropy and B-field direction

Elliptic anisotropy is measured by correlation between two particles

$$v_2\{EP\} = \langle \cos(2\phi_1 - 2\Psi_2) \rangle$$
 $v_2\{2\}^2 = \langle \cos(2\phi_1 - 2\phi_2) \rangle$

The plane of elliptic anisotropy Ψ_2 is correlated to B-field direction

How to measure charge separation due to CME?

Measure charge separation across Ψ_2 using the correlator:

$$\gamma^{\alpha,\beta} = \langle \cos(\phi_1^{\alpha} + \phi_2^{\beta} - 2\Psi_2) \rangle$$

CME case :
$$\gamma^{SS} \neq \gamma^{OS}$$

$$\gamma^{+-} = \cos(\pi/2 - \pi/2 + 0) = 1$$

$$\gamma^{++,--} = \cos(\pi/2 + \pi/2 + 0) = -1$$

Quantity of interest:

$$\Rightarrow \Delta \gamma^{^{CME}} = \gamma^{^{OS}} - \gamma^{^{SS}} > 0$$

CME causes difference in opposite-sign & same-sign correlation

Major source of background: decay of neutral clusters

Measure charge separation across Ψ_2 using the correlator:

$$\gamma^{\alpha,\beta} = \langle \cos(\phi_1^{\alpha} + \phi_2^{\beta} - 2\Psi_2) \rangle$$

$$\gamma^{+-} = \cos(0 + 0 + 0) = 1$$
$$\gamma^{++,--} = \cos(0 + \pi + 0) = -1$$

Non-CME effect such as flowing resonance decay can lead to difference

$$ightarrow \Delta \gamma^{reso} = \gamma^{os} - \gamma^{ss} \propto rac{v_2^{reso}}{N}$$

Why we need isobars to search for CME?

The first measurements at RHIC

The first measurements at RHIC

Significant charge separation observed, consistent with CME+ Background

$$\Delta\gamma = \Delta\gamma^{CME} + k \times \frac{v_2}{N} + \Delta\gamma^{non-flow}$$
 Measurement Signal Background-1 Background-2

CME search in small systems

$$egin{aligned} \Delta \gamma \overset{ ext{A+A}}{=} \Delta \gamma^{CME} + k imes rac{v_2}{N} + \Delta \gamma^{non-flow} \ & ext{II} & ext{**} & ext{**} \ \Delta \gamma \overset{ ext{p+A}}{=} \Delta \gamma^{CME} + k imes rac{v_2}{N} + \Delta \gamma^{non-flow} \end{aligned}$$

CMS collaboration, Phys. Rev Lett, 118 (2017) 122301

Flow and non-flow contributions are too different, less control and difficult to prove if

$$\Delta \gamma^{CME} = 0$$

Two systems of very different sizes → limited control over background This naturally leads to the idea of using two systems of similar sizes

Isobar in the chart of nuclides

Isobar collisions

Voloshin, Phys.Rev.Lett. 105 (2010) 172301

B-field square is 10-18% larger in Ru+Ru

$$\Delta_{\gamma}^{\text{Ru+Ru}} = \Delta_{\gamma}^{CME} + k \times \frac{v_2}{N} + \Delta_{\gamma}^{non-flow}$$
 ?? $+ k \times \frac{v_2}{N} + \Delta_{\gamma}^{non-flow}$ $+ k \times \frac{v_2}{N} + \Delta_{\gamma}^{non-flow}$

Isobar collisions provide the best possible control of signal and background compared to all previous experiments

$$\frac{(\Delta\gamma/v_2)_{\rm Ru+Ru}}{(\Delta\gamma/v_2)_{\rm Zr+Zr}} \approx 1 + f_{\rm CME}^{\rm Zr+Zr}[(B_{\rm Ru+Ru}/B_{\rm Zr+Zr})^2 - 1]$$
Unknown
0.18

Modality of the Isobar Run

Isobar collisions

$$\frac{(\Delta\gamma/v_2)_{\rm Ru+Ru}}{(\Delta\gamma/v_2)_{\rm Zr+Zr}} \approx 1 + f_{\rm \tiny CME}^{\rm Zr+Zr}[(B_{\rm Ru+Ru}/B_{\rm Zr+Zr})^2 - 1]$$
Unknown
$$0.18$$

$$> 1 \; ({\rm for} \, {\rm CME})$$

1.2 B collision events for each species can give 5σ significance for 20% signal level ($f_{CME} \sim 0.2$)

(A precision of 0.5% is needed !!)

Voloshin, Phys.Rev.Lett. 105 (2010) 172301

B-field square is 10-18% larger in Ru+Ru

https://drupal.star.bnl.gov/STAR/system/files/ STAR BUR Run1718 v22 0.pdf

$$(1 - f_{\text{CME}}) \times 100\%$$

Details Of The Data Taking Of The Isobar Run

Time

G. Marr et al., in 10th International Particle Accelerator Conference (2019) pp. 28-32.

> Two important steps: 1) Fill-by-fill switching 2) Level luminosity

Blind analysis of the isobar data

Steps of Isobar blind analysis

Blind analysis method: STAR Collaboration Nucl.Sci.Tech. 32 (2021) 5, 48 arXiv:1911.00596 [nucl-ex]

- NPP PAC recommended a blind analysis of isobar data Blinding
- No access to species-specific information before last step
- Everything documented (not written → not allowed)
- Case for CME & interpretation must be pre-defined

Quality assurance is done by pattern recognition algorithms to remove bias & noise

Sensitivity of CME observables verified using framework of BEST collaboration Choudhury et. al. arXiv:2105.06044

Five independent groups did isobar blind analysis

Five independent groups will perform analysis, all codes must be frozen and run by another person, results have to directly sent for publication

How the isobar blind analysis was done

Multiplicity difference between the isobars

Mean efficiency uncorrected multiplicity density is larger in Ru than in Zr in a matching centrality, this can affects signal and background difference between isobars

Quite unexpected result!!

What is the shape of the isobar nuclei?

Blind analysis: we decided to compare observables at same centralities between isobars

See references in:

Deng et. al., Phys. Rev. C 94, 041901 (2016), arXiv:1607.04697 [nucl-th]. Xu et. al., Phys. Rev. Lett. 121, 022301 (2018), arXiv:1710.03086 [nucl-th].

MC-Glauber with two-component model used to describe uncorrected multiplicity distribution. WS parameters with no deformation (thinker neutron skin in Zr) provides the best description of the multiplicity distributions

Elliptic anisotropy

v₂ studied η-gap, ratio deviates from unity indicating difference in the shape, nuclear structure between two isobars (larger quadruple deformation in Ru+Ru)

Elliptic anisotropy

v₂ studied η-gap, ratio deviates from unity indicating difference in the shape, nuclear structure between two isobars (larger octupole deformation in Zr+Zr)

Charge separation scaled by elliptic flow

$$\frac{(\Delta \gamma/v_2)_{\mathrm{RuRu}}}{(\Delta \gamma/v_2)_{\mathrm{ZrZr}}} > 1$$
 NOT seen!!

Experimental baseline-1: Randomize correlation with B-field

Charge separation across Ψ_2 plane (correlated to B-field)

 $\gamma_{112} - \langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\Psi_{2}) \rangle$

Signal (B-field) + Background (∝ v₂)

Old criterion for CME:

$$rac{(\Delta \gamma/v_2)_{
m RuRu}}{(\Delta \gamma/v_2)_{
m ZrZr}} > 1$$

Charge separation across Ψ₃ plane (NOT correlated to B-field)

$$\gamma_{123} = \langle \cos(\phi_{\alpha} + 2\phi_{\beta} - 3\Psi_{3}) \rangle$$

Background only ($\propto v_3$)

New criterion for CME:

$$\frac{\left(\Delta\gamma_{112}/v_2\right)^{RuRu}}{\left(\Delta\gamma_{112}/v_2\right)^{ZrZr}} > \frac{\left(\Delta\gamma_{123}/v_3\right)^{RuRu}}{\left(\Delta\gamma_{123}/v_3\right)^{ZrZr}}$$

Experimental baseline-2: Ignore B-field direction

Charge separation correlated to event plane

$$\gamma_{112} = \langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_2) \rangle$$

Old criterion for CME:

$$rac{(\Delta \gamma/v_2)_{
m RuRu}}{(\Delta \gamma/v_2)_{
m ZrZr}} > 1$$

$$\delta \equiv \langle \cos(\phi_{lpha} - \phi_{eta})
angle$$
 $\Delta \delta = \delta(OS) - \delta(SS)$

New criterion for CME:

$$\frac{(\Delta \gamma/v_2)_{\mathrm{RuRu}}}{(\Delta \gamma/v_2)_{\mathrm{ZrZr}}} > \frac{(\Delta \delta)_{\mathrm{RuRu}}}{(\Delta \delta)_{\mathrm{ZrZr}}}$$

Baseline measurement to put further constraints

Data not compatible with any of the pre-defined CME signatures!!

Measurement using STAR EPD (for the first time)

Pre-defined CME criteria:

$$rac{(\Delta \gamma/v_2)_{
m RuRu}}{(\Delta \gamma/v_2)_{
m ZrZr}} > 1$$

$$\frac{\left(\Delta\gamma_{112}/v_2\right)^{RuRu}}{\left(\Delta\gamma_{112}/v_2\right)^{ZrZr}} > \frac{\left(\Delta\gamma_{123}/v_3\right)^{RuRu}}{\left(\Delta\gamma_{123}/v_3\right)^{ZrZr}}$$

$$\frac{(\Delta \gamma/v_2)_{\rm RuRu}}{(\Delta \gamma/v_2)_{\rm ZrZr}} > \frac{(\Delta \delta)_{\rm RuRu}}{(\Delta \delta)_{\rm ZrZr}}$$

This pre-defined CME signatures are NOT seen

Factorization breaking

Primary observable

$$\gamma_{112} = \langle \cos(\phi_{\alpha} - \phi_{\beta} + 2\phi_{\beta} - 2\Psi_{2}) \rangle \approx \langle \cos(\phi_{\alpha} - \phi_{\beta}) \cos(2\phi_{\beta} - 2\Psi_{2}) \rangle = \kappa_{112} \langle \cos(\phi_{\alpha} - \phi_{\beta}) \rangle \langle \cos(2\phi_{\beta} - 2\Psi_{2}) \rangle$$

$$\gamma_{112} = \kappa_{112} \, \Delta \delta \times v_2$$

Measurement of factorization breaking observables

$$k_n = \frac{\Delta \left\langle \left\langle \cos(\Delta\phi_{\alpha\beta})\cos(n\Delta\phi_{\beta c})\right\rangle \right\rangle}{\Delta\delta_{\alpha,\beta} \times v_n^2\{2\}}$$

$$\frac{k_2^{Ru+Ru}}{k_2^{Zr+Zr}} > \frac{k_3^{Ru+Ru}}{k_3^{Zr+Zr}}$$

Measurements of CME fraction

CME fraction using spectator/participant planes

$$\Delta \gamma = \Delta \gamma^{\rm sig} + \Delta \gamma^{\rm bkg}$$

$$\mathrm{f_{CME}} = rac{\Delta \gamma^{\mathrm{Sig}}}{\Delta \gamma}$$

Four equations, four unknowns:

$$\Delta \gamma^{\rm sig}(\Psi_{\rm ZDC}) + \Delta \gamma^{\rm bkg}(\Psi_{\rm ZDC}) = \Delta \gamma(\Psi_{\rm ZDC})$$

$$\Delta \gamma^{\rm sig}(\Psi_{\rm TPC}) + \Delta \gamma^{\rm bkg}(\Psi_{\rm TPC}) = \Delta \gamma(\Psi_{\rm TPC})$$

$$\Delta \gamma^{\rm bkg}(\Psi_{\rm ZDC})/\Delta \gamma^{\rm bkg}(\Psi_{\rm TPC}) = v_2(\Psi_{\rm ZDC})/v_2(\Psi_{\rm TPC})$$

$$\Delta \gamma^{\rm sig}(\Psi_{\rm ZDC})/\Delta \gamma^{\rm sig}(\Psi_{\rm TPC}) = v_2(\Psi_{\rm TPC})/v_2(\Psi_{\rm ZDC})$$

Case of CME from this analysis is $f_{CME}(Ru) > f_{CME}(Zr)$

Valuable measurement but not decisive due to large uncertainties

Pseudorapidity distribution of charge separation

Causality precludes late-time correlations to spread over large η (wide acceptance → strength)

B-field driven charge separation: large $\Delta\eta>1$ Resonance decay: smaller $\Delta\eta<1$

The relative pseudorapidity dependence is similar between the two species

Invariant mass dependence of charge separation

Resonances are identifiable as peaks in invariant mass distribution

Pre-defined CME criteria: $\Delta \gamma^{\rm Ru+Ru} - a' \Delta \gamma^{\rm Zr+Zr} > 0$ $a' = v_2^{\rm Ru+Ru}/v_2^{\rm Zr+Zr}$

This pre-defined signature is NOT seen

R variable: an alternate measure of charge separation

R-variable is a ratio of distribution (of event-by-event charged-dependent dipole anisotropy)

$$R_{\Psi_2}(\Delta S) = C_{\Psi_2}(\Delta S)/C_{\Psi_2}^{\perp}(\Delta S),$$

$$C_{\Psi_2}(\Delta S) = rac{N_{
m real}(\Delta S)}{N_{
m shuffled}(\Delta S)},$$

$$\Delta S = rac{\sum\limits_{1}^{n^{+}} w_{i}^{+} \sin(\Delta arphi_{2})}{\sum\limits_{1}^{n^{+}} w_{i}^{+}} - rac{\sum\limits_{1}^{n^{-}} w_{i}^{-} \sin(\Delta arphi_{2})}{\sum\limits_{1}^{n^{-}} w_{i}^{-}},$$

The width of R-variable is sensitive to signal + Background

The case for CME is:
$$1/\sigma_{R_{\Psi_2}}(\mathrm{Ru}+\mathrm{Ru})>1/\sigma_{\mathrm{R}_{\Psi_2}}(\mathrm{Zr}+\mathrm{Zr})$$

R variable: an alternate measure of charge separation

Pre-defined CME criteria: $1/\sigma_{R_{\Psi_2}}(Ru + Ru) > 1/\sigma_{R_{\Psi_2}}(Zr + Zr)$

This pre-defined signature is NOT seen

Compilation of results

Good consistency between results from different groups. Predefined CME signatures: Ratios involving Ψ_2 > those involving Ψ_3 , and > 1 None of the predefined signatures have been observed in the blind analysis

Limited Post-blind analysis: modified CME baseline

Challenge: Multiplicity turned out to be different for the two isobar, was not know before blind analysis, dilution of signal & background ~ 1/multiplicity, this effect is different for two species

Blind analysis criterion for CME: $\frac{(\Delta \gamma/v_2)_{\rm RuRu}}{(\Delta \gamma/v_2)_{\rm ZrZr}} > 1$

$$\Delta_{\gamma}^{\mathrm{Ru+Ru}} \Delta_{\gamma}^{CME} + k imes rac{v_2}{N}$$
?? $+ k imes rac{v_2}{N}$ $\Delta_{\gamma}^{\mathrm{Zr+Zr}} \Delta_{\gamma}^{CME} + k imes rac{v_2}{N}$

Post-blinding criterion for CME:

$$\frac{(\Delta \gamma/v_2)_{\rm RuRu}}{(\Delta \gamma/v_2)_{\rm ZrZr}} > \frac{(1/N_{\rm ch})_{\rm RuRu}}{(1/N_{\rm ch})_{\rm ZrZr}}$$

Limited Post-blind analysis: modified CME baseline

Sergei Voloshin, DNP 2021

 $(1/N_{
m ch})_{
m ZrZr}$

Change of baseline from "1" to 1/multiplicity

Investigation is on to extract a CME upper-limit

How to understand isobar results?

Gang Wang, Chirality workshop, 2021

$$\kappa_{112} \equiv rac{\Delta \gamma_{112}}{v_2 \cdot \Delta \delta}$$

Interpolation (not re-analysis) at same multiplicity

B-filed in isobars compared to Au+Au/U+U

Single (b=0) collision in IP-Glasma model, Ru, Zr parameters: Deng et al PRC 94,041901 (2016)

Fuqiang Wang, Chirality workshop, 2021

Could be x3 reduction in $f_{\rm CME}$ at the same n_5/s If AuAu $f_{\rm CME}$ =10%, then isobar 3% (1 σ effect) Ru/Zr = 1 + 15%*3% = 1.005 (±0.004)

Reduction of signal in isobar system Y. Feng et. al., Phys. Lett. B 820, 136549 (2021), arXiv:2103.10378 [nucl-ex].

What is the future of CME search?

STAR EPD: better handle on B-field direction (1912.05243)

CME @ BES-II data arXiv:2110.15937 Criticality & CME 2012.02926

CME search with AIML (2105.13761)

Summary

Experimental test of CME in isobar collisions performed using a blind analysis

A precision down to 0.4% achieved but no pre-defined signature of CME is observed

Primary CME observable $\Delta \gamma/v_2$ baseline is affected by the multiplicity difference (4% in 20-50%), postblind analysis is needed to search for residual CME signal

CME search has been narrowed down, future program will look for upper limit (1% level)

Thank You